114 Mattix Algebra

A matrix is defined as a rectangular array of numbers:

	Column i	Column 2		Column j		Columna
Row 1	$\lceil a_{11} \rceil$	a_{12}	* * *	a_{1j}	* * *	a_{1n}
Row 2	a_{21}	a_{22}	* + *	a_{2j}	***	a_{2n}
* *	*	*		*		*
Rowl	ail	a_{i2}	***	a_{ij}	***	a_{in}
4 4 8	1 :	* * *		*		*
Rowm	$\lfloor a_{m1} \rfloor$	a_{m2}	***	a_{mj}	***	a_{mn}

matrix with m rows and n columns is called an m by n matrix

If an m by n matrix has the same number of rows as columns, that is, if m = n, then the matrix is referred to as a square matrix.

Examples of Matrices

(a)
$$\begin{bmatrix} 5 & 0 \\ -6 & 1 \end{bmatrix}$$
 A 2 by 2 equare matrix (b) $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$ A 1 by 3 matrix (c) $\begin{bmatrix} 6 & -2 & 4 \\ 4 & 3 & 5 \\ 8 & 0 & 1 \end{bmatrix}$ A 3 by 3 equare matrix

A matrix whose entries are all equal to 0 is called a zero matrix. Each of the following matrices is a zero matrix.

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{2 by 2 square} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{2 by 3 zero} \qquad \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \quad \text{1 by 3 zero} \\ \text{matrix} \qquad \qquad \text{matrix} \qquad \qquad \text{matrix}$$

Zero matrices have properties similar to the real number 0. If A is an m by n matrix and 0 is the m by n zero matrix, then

$$A + 0 = 0 + A = A$$

In other words, the zero matrix is the additive identity in matrix algebra.

Find the Sum and Difference of Two Matrices

Many of the algebraic properties of sums of real numbers are also true for sums of matrices. Suppose that A, B, and C are m by n matrices. Then matrix addition is commutative. That is,

Commutative Property of Matrix Addition

$$A+B=B+A$$

Matrix addition is also associative. That is.

Associative Property of Matrix Addition

$$(A + B) + C = A + (B + C)$$

Adding and Subtracting Matrices

Suppose that

$$A = \begin{bmatrix} 2 & 4 & 8 & -3 \\ 0 & 1 & 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} -3 & 4 & 0 & 1 \\ 6 & 8 & 2 & 0 \end{bmatrix}$$

Find: (a)
$$A + B$$

(b)
$$A - B$$

(a)
$$A + B = \begin{bmatrix} 2 & 4 & 8 & -3 \\ 0 & 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} -3 & 4 & 0 & 1 \\ 6 & 8 & 2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 + (-3) & 4 + 4 & 8 + 0 & -3 + 1 \\ 0 + 6 & 1 + 8 & 2 + 2 & 3 + 0 \end{bmatrix}$$
Add corresponding entries.
$$= \begin{bmatrix} -1 & 8 & 8 & -2 \\ 6 & 9 & 4 & 3 \end{bmatrix}$$

(b)
$$A - B = \begin{bmatrix} 2 & 4 & 8 & -3 \\ 0 & 1 & 2 & 3 \end{bmatrix} - \begin{bmatrix} -3 & 4 & 0 & 1 \\ 6 & 8 & 2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 - (-3) & 4 - 4 & 8 - 0 & -3 - 1 \\ 0 - 6 & 1 - 8 & 2 - 2 & 3 - 0 \end{bmatrix}$$
Subtract corresponding entries.
$$= \begin{bmatrix} 5 & 0 & 8 & -4 \\ -6 & -7 & 0 & 3 \end{bmatrix}$$

Find Scalar Multiples of a Matrix

We can also multiply a matrix by a real number. If k is a real number and A is an m by n matrix, the matrix kA is the m by n matrix formed by multiplying each entry a_{ij} in A by k. The number k is sometimes referred to as a scalar, and the matrix kA is called a scalar multiple of A.

Properties of Scalar Multiplication

$$k(hA) = (kh)A$$
$$(k+h)A = kA + hA$$
$$k(A+B) = kA + kB$$

Operations Using Matrices

Suppose that

$$A = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad C = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

(b)
$$\frac{1}{3}C$$

(c)
$$3A - 2B$$

(a)
$$4A = 4\begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3 & 4 \cdot 1 & 4 \cdot 5 \\ 4(-2) & 4 \cdot 0 & 4 \cdot 6 \end{bmatrix} = \begin{bmatrix} 12 & 4 & 20 \\ -8 & 0 & 24 \end{bmatrix}$$

(b)
$$\frac{1}{3}C = \frac{1}{3}\begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \cdot 9 & \frac{1}{3} \cdot 0 \\ \frac{1}{3}(-3) & \frac{1}{3} \cdot 6 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix}$$

(c)
$$3A - 2B = 3\begin{bmatrix} 3 & 1 & 5 \ -2 & 0 & 6 \end{bmatrix} - 2\begin{bmatrix} 4 & 1 & 0 \ 8 & 1 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \cdot 3 & 3 \cdot 1 & 3 \cdot 5 \ 3(-2) & 3 \cdot 0 & 3 \cdot 6 \end{bmatrix} - \begin{bmatrix} 2 \cdot 4 & 2 \cdot 1 & 2 \cdot 0 \ 2 \cdot 8 & 2 \cdot 1 & 2(-3) \end{bmatrix}$$

$$= \begin{bmatrix} 9 & 3 & 15 \ -6 & 0 & 18 \end{bmatrix} - \begin{bmatrix} 8 & 2 & 0 \ 16 & 2 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} 9 - 8 & 3 - 2 & 15 - 0 \ -6 - 16 & 0 - 2 & 18 - (-6) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 15 \ -22 & -2 & 24 \end{bmatrix}$$

HW: Do #1, 2, 9-14

11.4 Assess Your Understanding

Concepts and Vocabulary

- A matrix that has the same number of rows as columns is called a(n) ______ matrix.
- 2. True or False Matrix addition is commutative.
- To find the product AB of two matrices A and B, the number of ______in matrix A must equal the number of ______in matrix B.
- 4. True or False Matrix multiplication is commutative.
- 5. Suppose that A is a square n by n matrix that is nonsingular. The matrix B such that $AB = BA = I_n$ is called the ______ of the matrix A.
- 6. If a matrix A has no inverse, it is called
- 7. True or False The identity matrix has properties similar to those of the real number 1.
- 8. If AX = B represents a matrix equation where A is a nonsingular matrix, then we can solve the equation using X =

Skill Building

In Problems 9-24, use the following matrices to evaluate the given expression.

$$A = \begin{bmatrix} 0 & 3 & -5 \\ 1 & 2 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & 1 & 0 \\ -2 & 3 & -2 \end{bmatrix} \qquad C = \begin{bmatrix} 4 & 1 \\ 6 & 2 \\ -2 & 3 \end{bmatrix}$$

 $\searrow 0, A+B$

10. A - E

11 11

12. -3B

√13. 3A - 2B

14. 2A + 4B

N 15. AC

16. BC